Long, Atomically Precise Donor-Acceptor Cove-Edge Nanoribbons as Electron Acceptors.
نویسندگان
چکیده
This Communication describes a new molecular design for the efficient synthesis of donor-acceptor, cove-edge graphene nanoribbons and their properties in solar cells. These nanoribbons are long (∼5 nm), atomically precise, and soluble. The design is based on the fusion of electron deficient perylene diimide oligomers with an electron rich alkoxy pyrene subunit. This strategy of alternating electron rich and electron poor units facilitates a visible light fusion reaction in >95% yield, whereas the cove-edge nature of these nanoribbons results in a high degree of twisting along the long axis. The rigidity of the backbone yields a sharp longest wavelength absorption edge. These nanoribbons are exceptional electron acceptors, and organic photovoltaics fabricated with the ribbons show efficiencies of ∼8% without optimization.
منابع مشابه
Optical spectrum of bottom-up graphene nanoribbons: towards efficient atom-thick excitonic solar cells
Recently, atomically well-defined cove-shaped graphene nanoribbons have been obtained using bottom-up synthesis. These nanoribbons have an optical gap in the visible range of the spectrum which make them candidates for donor materials in photovoltaic devices. From the atomistic point of view, their electronic and optical properties are not clearly understood. Therefore, in this work we carry ou...
متن کاملGiant edge state splitting at atomically precise graphene zigzag edges
Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host e...
متن کاملAtomically precise edge chlorination of nanographenes and its application in graphene nanoribbons
Chemical functionalization is one of the most powerful and widely used strategies to control the properties of nanomaterials, particularly in the field of graphene. However, the ill-defined structure of the present functionalized graphene inhibits atomically precise structural characterization and structure-correlated property modulation. Here we present a general edge chlorination protocol for...
متن کاملThe donor/acceptor edge-modification: an effective strategy to modulate the electronic and magnetic behaviors of zigzag silicon carbon nanoribbons.
Based on first principles computations, we systematically investigated electronic and magnetic properties of zSiCNRs with unilateral/bilateral modification by employing electron donor/acceptor groups, where five chemical functional groups are sampled, namely, CH3, OH, NH2, CN and NO2. Our computed results reveal that the edge modification with donor/acceptor groups can break the magnetic degene...
متن کاملRaman Fingerprints of Atomically Precise Graphene Nanoribbons
Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 139 16 شماره
صفحات -
تاریخ انتشار 2017